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Abstract

This paper aims to explore various state-of-the-art ob-
ject detection models for video analysis, including Mask
R-CNN[3], Temporal ROI Align[7], RetinaNet[2], Box-
mask[8], YOLOV[4], TransVOD[5] and VSTAM[6]. The
paper provides a comprehensive analysis of these models,
studying their architectures, design choices, and perfor-
mance on the IILVSRC2016-VID[1] dataset. The dataset is
described in detail, including its specifications, which cover
common objects/subjects of 35 categories and predicates of
132 categories. The paper evaluates the models quantita-
tively and discusses the results obtained. Additionally, the
paper establishes relationships between these architectures,
highlighting their similarities and differences, and provid-
ing insights into their strengths and weaknesses. Specifi-
cally we focused on integrating box masks in the state-of-
the-art models to achieve even higher mAP scores. Overall,
this paper serves as a valuable resource for researchers and
practitioners working on video object detection and analy-
sis, providing a comprehensive overview of the latest tech-
niques and approaches in the field.

1. INTRODUCTION
Object detection in videos has been a challenging task in

computer vision due to the complex nature of video data,
which contains a large number of objects, different scales,
orientations, occlusions, and background variations. There-
fore, it requires the development of robust and efficient al-
gorithms that can handle such variations and provide accu-
rate and timely object detection and tracking. One of the
key factors that have enabled this progress is the use of
backbone architectures, which are pre-trained deep neural
networks that can extract high-level features from images
and videos. Backbone architectures have become an essen-
tial component of many state-of-the-art video object detec-
tion models, as they can provide a good trade-off between
accuracy and speed.

Among the commonly used backbones in video object
detection, Fast R-CNN and FCN are notable examples. Fast

R-CNN is a meta-algorithm that builds on the earlier R-
CNN and Faster R-CNN models, by introducing a region
proposal network (RPN) that can generate object propos-
als directly from feature maps. Fast R-CNN is known
for its intuitive design and good speed, making it a pop-
ular choice for many video object detection applications.
These methods are conceptually intuitive and offer flexibil-
ity and robustness, together with fast training and inference
time. Several state-of-the-art models have been proposed
that utilizes these backbones and achieve high accuracy and
real-time performance for video object detection, such as
Mask R-CNN, Temporal ROI Align, BoxMask, YOLOV,
TransVOD and VSTAM. Our goal in this work is to study
these models and provides insights in comparably enabling
framework for object detection.

In this paper, we aim to provide a comprehensive
overview of these models and evaluate their performance
on the IILVSRC2016-VID dataset, which is a widely used
benchmark for video object detection. The IILVSRC2016-
VID dataset consists of 1000 video sequences of 35 cat-
egories of common objects/subjects and 132 categories of
predicates. The dataset is split into 800 training sets and
200 test sets, making it suitable for evaluating the perfor-
mance of different models.

The paper is organized as follows: In section 2, we dis-
cuss the related work on object detection and tracking in
videos. In section 3, we provide a detailed description of the
models and techniques used in this paper. In section 4, we
present the experimental setup and results of our evaluation
on the IILVSRC2016-VID dataset. In section 5, we discuss
the results obtained and provide insights into the strengths
and weaknesses of the different models. Finally, in section
6, we conclude the paper and discuss future directions for
research in this area.

2. Related Work
Object detection and tracking in videos have been exten-

sively studied in the literature, with several approaches pro-
posed over the years. Early approaches used handcrafted
features and background subtraction techniques to detect
and track objects in videos. However, these approaches suf-



fered from low accuracy and were limited to simple scenar-
ios.

Viola-Jones. The initial approach for video object de-
tection was based on still images, and relied on handcrafted
features and heuristics. The Viola-Jones detector, proposed
in 2001, was a landmark work in this field, as it introduced
a simple and efficient algorithm for object detection for still
images using Haar features and Adaboost classifier. The
Viola-Jones detector achieved high accuracy and speed, and
was widely used in many applications, such as face recog-
nition and video surveillance. However, the Viola-Jones
detector was limited to detecting faces and other simple
objects, and its performance degraded in the presence of
occlusions, cluttered backgrounds, and variations in object
pose and scale. Therefore, there was a need for more pow-
erful and flexible models that can handle these challenges
and scale to large datasets.

One-stage Detectors. One-stage detectors, such as
YOLO (You Only Look Once) and SSD (Single Shot Detec-
tor), are designed to detect objects in a single pass through
the network, by predicting object bounding boxes and class
labels directly from feature maps. These detectors use a
grid-based approach to generate object detections directly
from the feature maps, without the need for RoI operations.
In the grid-based approach, the input frames are divided into
a set of fixed-size grids, and each grid is associated with
a set of anchor boxes of different aspect ratios and scales.
The object detections are generated by predicting the class
probabilities and bounding box offsets for each anchor box,
and then selecting the anchor boxes with the highest scores
as the final object detections. One-stage detectors have a
simpler and faster design compared to two-stage detectors,
and can achieve real-time performance on high-resolution
video streams. However, one-stage detectors may suffer
from lower accuracy and precision, especially for small ob-
jects and complex scenes.

Two-stage Detectors. Two-stage detectors, such as
Faster R-CNN (Region-based Convolutional Neural Net-
work) and Mask R-CNN, are based on a region proposal
network (RPN) that generates object proposals from feature
maps, followed by a classifier that predicts the object class
and refine the bounding box. In the first step, a region pro-
posal network (RPN) is used to generate a set of candidate
regions (or proposals) that may contain objects. The RPN
typically uses a sliding window approach to generate pro-
posals at different scales and aspect ratios. In the second
step, a separate neural network is used to classify the pro-
posals and refine their bounding boxes. Two-stage detec-
tors are generally more accurate than one-stage detectors,
but are also slower and more computationally expensive.

Feature Maps. Feature maps are an important compo-
nent in many computer vision tasks, including object de-
tection and recognition. In video object detection, feature

maps can be used in combination with Region of Inter-
est (RoI) operations to extract features and classify objects
within specific regions of the input frames. RoI operations
involve defining a bounding box around a specific object
or region of interest in the input frames, and extracting the
corresponding features from the feature maps within that
bounding box. This is done by mapping the coordinates of
the bounding box onto the feature maps and extracting the
features within that region. RoI operations is used for two-
stage object detection models.

Transformers. In recent advancement, transformer-
based frameworks have been proposed for video object de-
tection, such as TransVOD and VSTAM. These frameworks
use attention guided mechanisms to capture long-term de-
pendencies and object motion and appearance changes over
time, achieving state-of-the-art results on several bench-
marks.

3. Literature Review

Our literature review extensively references a wide range
of papers to provide comprehensive insights and under-
standings of the underlying architecture in them.

3.1. Mask R-CNN

Mask R-CNN is based on the Faster R-CNN architec-
ture, which consists of two main components: a region
proposal network (RPN) and a fast R-CNN detector. The
RPN generates candidate object proposals, and the fast R-
CNN detector uses these proposals to predict the class labels
and bounding boxes for the objects. Mask R-CNN extends
this architecture by adding a third branch to the network,
which performs instance segmentation on the object pro-
posals. The instance segmentation branch in Mask R-CNN
is based on the fully convolutional network (FCN) architec-
ture, which was originally developed for semantic segmen-
tation tasks. The FCN consists of a series of convolutional
and deconvolutional layers that produce a dense pixel-wise
prediction for each image.

Figure 1. Mask R-CNN Architecture



From Figure.1, we can see that FCN is modified to take
the RoI features from the object proposals generated by the
RPN, and to produce a binary mask for each object instance.
The backbone of Mask R-CNN is based on the ResNet ar-
chitecture, which consists of a series of residual blocks that
allow for deeper and more efficient network training. Addi-
tionally, it incorporates RoIAlign instead of RoIPooling for
more accurate feature extraction from the object proposals
to preserve spatial information, and a mask head network
for generating the instance segmentation masks.

3.2. Temporal ROI Align

It extracts the most similar ROI features from support
frames for target frame proposals based on feature similar-
ity, implicitly incorporating temporal information. A tem-
poral attention mechanism is employed to aggregate these
ROI features, giving more importance to clear object in-
stances. The proposed operator not only improves perfor-
mance in video object detection but also has potential ap-
plications in other video tasks, such as video instance seg-
mentation.

3.3. RetinaNet

The RetinaNet architecture is based on a feature pyramid
network (FPN) that extracts features from images at multi-
ple scales. The FPN is combined with a single-stage detec-
tion architecture, which allows for a simpler and more effi-
cient model compared to previous two-stage detection mod-
els like Faster R-CNN. The RetinaNet model uses a novel
focal loss function to address the class imbalance problem
in dense object detection, where the vast majority of regions
in an image do not contain any objects.

FL(pt) = −(1− pt)
γ log(pt) (1)

, where pt is the predicted probability of the ground-truth
class, and γ is a tunable parameter that controls the focus-
ing factor. The focal loss function assigns a higher weight
to misclassified examples with low predicted probabilities,
which helps the model to better learn from hard examples.

3.4. BoxMask

Figure 2. Overall architecture of the detection phase equipped with
a BoxMask head at the bottom.. Due to its simplistic design, the
proposed BoxMask head can be integrated into any region-based
VOD method.

The BoxMask model builds upon previous work in ob-
ject detection, incorporating key ideas from the two-stage
detection model Mask R-CNN and the single-stage detector
RetinaNet. Specifically, BoxMask uses a two-stage detec-
tion framework that consists of a region proposal network
(RPN) and a box and mask head network. The RPN gen-
erates candidate object regions in each frame of the video,
while the box and mask head network classifies and refines
these regions to produce the final object detections.

One key innovation of the BoxMask model is its use of
bounding box supervision, which involves explicitly mod-
eling the relationships between object boxes across frames.
This approach allows the model to better handle complex
motion patterns and occlusions, resulting in more accurate
and robust object detections in videos. The BoxMask model
achieves this by incorporating a novel box and mask consis-
tency loss, which encourages the predicted object boxes and
masks to be consistent across frames.

The BoxMask model employs a bounding box mask ten-
sor Mbox to optimize the mask prediction by minimizing
the cross-entropy loss Lbm, which is defined by the follow-
ing equation:

Lbm = − 1

m

m∑
i=1

C−1∑
c=0

M(i, c) log(y(i, c)) (2)

Here, Lbm is the loss function for predicting the class for
each pixel in each sampled Region of Interest (RoI). The
term C represents the number of classes, and y(i, c) denotes
the predicted probability of class c for pixel i. The BoxMask
loss function decouples the prediction of mask and class la-
bels, allowing the model to learn features for localization.

The BoxMask model integrates the BoxMask head in
region-based video object detection methods to compute the
detection loss Ldet, which is defined as follows:

Ldet = Lcls + Lreg + λLbm (3)

Here, Lcls and Lreg are the classification and regression
losses, respectively.

3.5. YOLOV

Traditional two-stage approaches suffer from slow speed
due to the large number of low-confidence region candi-
dates. To overcome this limitation, the authors introduce a
two-stage pipeline where the first stage involves prediction
and discarding regions with low confidences, while the sec-
ond stage focuses on region-level refinement through tem-
poral aggregation.

The authors emphasize the importance of seeking sup-
portive information from other frames for a target frame
(keyframe) in video object detection. By designing their
approach as a region/feature selection after the prediction
head of one-stage detectors, they aim to benefit from the



efficiency of one-stage detectors and the accuracy gained
from temporal aggregation. The proposed strategy can be
applied to various base detectors such as FCOS and PPY-
OLOE.

Figure 3. YOLOV Architecture

A Feature Selection Module (FSM) is introduced to se-
lect high-quality candidates from the feature maps of the
detection head. This module picks top predictions based
on confidence scores, applies Non-Maximum Suppression
(NMS) to reduce redundancy, and collects the features of
these predictions for further refinement.

3.6. TransVOD

The paper introduces TransVOD, an end-to-end video
object detection system that utilizes spatial-temporal Trans-
former architectures. The main objective of the paper is to
streamline the pipeline of video object detection by elim-
inating the need for hand-designed components used for
feature aggregation, such as optical flow models and rela-
tion networks. TransVOD leverages the object query design
from DETR, which eliminates the need for post-processing
methods like Seq-NMS.

The proposed approach incorporates a temporal Trans-
former consisting of two components: the Temporal Query
Encoder (TQE) and the Temporal Deformable Transformer
Decoder (TDTD). The TQE fuses object queries, while the
TDTD is responsible for obtaining the detection results for
each frame. These design choices significantly improve the
performance of the baseline deformable DETR by achiev-
ing a notable increase in mean Average Precision (mAP) of
3%-4% on the ImageNet VID dataset.

3.7. VSTAM

The VSTAM model employs a sparse attention mecha-
nism that selectively attends to relevant frames and features
in the input video. This attention mechanism is guided by
the memory module, which consists of a set of learnable
keys and values that encode information about the objects
and their trajectories. The attention mechanism is used to
compute a set of weights that determine the relevance of
each frame and feature for the task at hand. This enables
the model to focus its attention on the most relevant frames
and features, reducing the computational complexity of pro-
cessing long video sequences. It also employs random and

positional attention mechanisms, which enable the model to
learn spatial and temporal dependencies in the input video.

4. Experimental Setup
To evaluate the performance of various video object de-

tection models, we utilized a pytorch Dataset that gets video
data from the ImageNet Video dataset[1]. The dataset con-
tains 1,000 video sequences, split into 800 for training and
200 for testing, and covers 35 object categories and 132
predicate categories.

We performed necessary preprocessing on the dataset,
such as resizing the frames to 224x224 sized pixels and
splitting the videos into individual frames. We also stream-
lined our workflow by creating a Dataloader that feeds the
data into the models for training and testing.

For all the models, we implemented the experimental
setup using hyperparameters provided in their respective of-
ficial papers. This includes the use of specific network ar-
chitectures such as ResNet, ResNeXt, and FPN, as well as
the size of input images and any changes made to the fo-
cal loss. We also used other methods described in the pa-
pers such as the use of a size window in TransVOD and
VSTAM. These hyperparameters were carefully chosen to
ensure that our experiments were consistent with those re-
ported in the literature and to provide a fair comparison be-
tween the models.

For evaluation metric, we are using Intersection over
Union (IoU) with a threshold of 0.5 as the evaluation met-
ric for all the models. This is a commonly used metric for
object detection tasks that measures the overlap between
the predicted bounding box and the ground truth bounding
box. We also use mean Average Precision (mAP) as the sec-
ondary evaluation metric. mAP is a widely used metric that
takes into account both precision and recall of object detec-
tion models. It measures the accuracy of the model across
multiple IoU thresholds, typically ranging from 0.5 to 0.95.

With the basic workflow ready and the baseline perfor-
mance established, we can now proceed to implement the
models described in the literature review and compare their
performance against the baseline.

5. Comparative Study and Analysis
Quantitative Results. The ImageNet VID dataset is one

of the standard benchmarks for object detection, and several
state-of-the-art methods have been developed to tackle this
task. The mAP (R-50) and IoU0.5 scores are the commonly
used metrics to evaluate the performance of object detection
models on this dataset.

Among the compared methods, VSTAM achieves the
highest mAP score of 91.1, followed closely by TransVOD
at 90.0. Both methods use visual transformers, which have
shown promising results in many computer vision tasks,



including object detection. These results suggest that vi-
sual transformers are a powerful tool for object detection,
and they outperform the traditional backbone networks like
ResNet and ResNext used in other methods.

The next best performing method is TROI, which
achieves an mAP score of 78.9, followed by TROI + Box-
Mask at 80.7. These methods use temporal RoI align, which
takes advantage of the temporal consistency of object mo-
tion in video data to improve object detection performance.
RetinaNet and RetinaNet + BoxMask achieve mAP scores
of 61.1 and 62.7, respectively.

The two versions of YOLOV (YOLOV and TinyY-
OLOV) achieve the lowest mAP scores among the com-
pared methods, at 54.9 and 51.4, respectively. However,
when combined with the BoxMask approach, the perfor-
mance of YOLOV and TinyYOLOV is improved, but still,
they remain the lowest performing methods among the com-
pared ones.

Regarding IoU0.5 scores, VSTAM and TransVOD
achieve the highest scores of 0.83 and 0.85, respectively.
The IoU0.5 scores for other methods are lower, ranging from
0.52 for TinyYOLOV + BoxMask to 0.81 for TROI.

TABLE I. Comparison of existing state-of-art methods on
ImageNet VID Dataset.

Method mAP (R-50) IoU0.5

Mask R-CNN 59.5 0.6
TROI 78.9 0.81

RetinaNet 61.1 0.67
YOLOV 54.9 0.63

TinyYOLOV 51.4 0.55
TransVOD 90.0 0.85
VSTAM 91.1 0.83

TROI + BoxMask 80.7 0.74
RetinaNet + BoxMask 62.7 0.69
YOLOV + BoxMask 57.2 0.59

TinyYOLOV + BoxMask 53.2 0.52

Table 2. shows the results of experiments performed on
RetNet architecture with focal loss. The experiments were
performed by varying the parameters α and γ while keeping
the value of IoU threshold constant at 0.5. The mAP (R-50)
was used as the evaluation metric for the experiments.

From the results, we can observe that as the value of α
increases, the mAP (R-50) also increases. This is expected
as increasing the value of α puts more emphasis on hard
examples, leading to better classification of such examples.
The highest mAP (R-50) of 52.5 is obtained when α is set
to 2.

However, when γ is set to 0.5, the mAP (R-50) drops
compared to when γ is set to 0.25. This is expected as a
higher value of γ is expected to increase the weight given
to positive samples, leading to better classification of such

samples but keeping it much high will cause negative sam-
ples to diminish and thus there will be false positives. The
highest mAP (R-50) of 52.5 is obtained when γ is set to
0.25.

We can also observe that when α is set to 5, the mAP (R-
50) drops significantly compared to the other values of α.
This may be due to too much emphasis on hard examples,
causing the model to overfit on the training set and perform
poorly on the test set.

TABLE II. mAP analysis by varying α and γ weights for
focal loss in RetinaNet architecture.

α γ AP (R-50)
0 0.75 49.4

0.1 0.75 49.9
0.2 0.75 50.7
0.5 0.5 51.7
1 0.25 52.0
2 0.25 52.5
5 0.25 49.6

Qualitative Analysis. The BoxMask + RetinaNet
model has been successful in detecting objects with good
bounded boxes as can be seen in Figure 4. But we can also
observe that there are still some areas of improvement for
this model. In situations where there is occlusion or poor
lighting, the model can sometimes struggle to accurately
detect objects.

Let us consider an example to illustrate the performance
of the three object detection models. In Figure 5, 6, and
7, the video frame contains two persons, two bikes, and
a backpack. We tested the models’ performance on this
frame, and observed that TinyYOLOv3 had the fastest in-
ference time but detected an extra motorbike, which was
not present in the frame.

Figure 5. TinyYOLOv3

YOLOv3, on the other hand, correctly identified the per-
sons and bikes, but failed to detect the backpack.



Figure 4. Bounded Boxes for detected objects from BoxMask + RetinaNet architecture

Figure 6. YOLOV

Finally, RetinaNet was able to detect all five objects
correctly, indicating superior performance compared to the
other models.

Figure 7. RetinaNet

6. Conclusion
In conclusion, we have made significant progress to-

wards achieving our goal of exploring various state-of-the-
art object detection models for video analysis. We have de-
veloped a dataloader that streamlines our workflow and en-
ables us to efficiently process data from the IILVSRC2016-

VID dataset. The study also explored the impact of Box-
Masking on the performance of these models. The results
showed that BoxMasking can improve the performance of
RetinaNet and YOLOV. Furthermore, the BoxMasking ap-
proach also has the potential to improve the performance of
other object detection models. However, the results also in-
dicated that BoxMasking may fail in occlusion or lighting
conditions, and further improvement is needed to increase
its efficiency.

Overall, the study suggests that BoxMasking can be a
promising approach to improve object detection models’
performance. Furthermore, the study highlights the impor-
tance of selecting appropriate object detection models based
on the specific use case, data characteristics, and evaluation
metrics. Future research can explore more in-depth analy-
sis of BoxMasking and other approaches to improve object
detection models’ performance.

Insights can be implemented using BoxMask include,
but not limited to, improving object detection models’ per-
formance, reducing false positives and false negatives, and
enhancing object localization accuracy using frame win-
dow. Additionally, BoxMasking can also help in better de-
tecting and segmenting objects in challenging conditions,
such as low lighting and occlusion, leading to better object
detection and tracking in real-world applications.
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